Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(7): 110375, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35172155

RESUMO

Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.


Assuntos
Epitélio , Glicoproteínas , Integrina beta1 , Glândulas Mamárias Animais , Morfogênese , Transdução de Sinais , Animais , Movimento Celular/genética , Polaridade Celular , Proliferação de Células , Regulação para Baixo , Células Epiteliais/metabolismo , Epitélio/crescimento & desenvolvimento , Feminino , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/metabolismo , Integrina beta1/metabolismo , Glândulas Mamárias Animais/crescimento & desenvolvimento , Glândulas Mamárias Animais/metabolismo , Camundongos Transgênicos , Modelos Biológicos , Ligação Proteica
2.
PLoS Biol ; 20(1): e3001518, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041644

RESUMO

Lipid droplets (LDs) have increasingly been recognized as an essential organelle for eukaryotes. Although the biochemistry of lipid synthesis and degradation is well characterized, the regulation of LD dynamics, including its formation, maintenance, and secretion, is poorly understood. Here, we report that mice lacking Occludin (Ocln) show defective lipid metabolism. We show that LDs were larger than normal along its biogenesis and secretion pathway in Ocln null mammary cells. This defect in LD size control did not result from abnormal lipid synthesis or degradation; rather, it was because of secretion failure during the lactation stage. We found that OCLN was located on the LD membrane and was bound to essential regulators of lipid secretion, including BTN1a1 and XOR, in a C-terminus-dependent manner. Finally, OCLN was a phosphorylation target of Src kinase, whose loss causes lactation failure. Together, we demonstrate that Ocln is a downstream target of Src kinase and promotes LD secretion by binding to BTN1a1 and XOR.


Assuntos
Gotículas Lipídicas/fisiologia , Metabolismo dos Lipídeos , Glândulas Mamárias Animais/metabolismo , Ocludina/metabolismo , Animais , Butirofilinas/metabolismo , Feminino , Lactação/metabolismo , Camundongos , Leite/metabolismo , Ocludina/genética , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(9): 4758-4769, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32051248

RESUMO

Tight junctions (TJs) are fundamental features of both epithelium and endothelium and are indispensable for vertebrate organ formation and homeostasis. However, mice lacking Occludin (Ocln) develop relatively normally to term. Here we show that Ocln is essential for mammary gland physiology, as mutant mice fail to produce milk. Surprisingly, Ocln null mammary glands showed intact TJ function and normal epithelial morphogenesis, cell differentiation, and tissue polarity, suggesting that Ocln is not required for these processes. Using single-cell transcriptomics, we identified milk-producing cells (MPCs) and found they were progressively more prone to endoplasmic reticulum (ER) stress as protein production increased exponentially during late pregnancy and lactation. Importantly, Ocln loss in MPCs resulted in greatly heightened ER stress; this in turn led to increased apoptosis and acute shutdown of protein expression, ultimately leading to lactation failure in the mutant mice. We show that the increased ER stress was caused by a secretory failure of milk proteins in Ocln null cells. Consistent with an essential role in protein secretion, Occludin was seen to reside on secretory vesicles and to be bound to SNARE proteins. Taken together, our results demonstrate that Ocln protects MPCs from ER stress by facilitating SNARE-dependent protein secretion and raise the possibility that other TJ components may participate in functions similar to Ocln.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Exocitose/fisiologia , Ocludina/farmacologia , Substâncias Protetoras/farmacologia , Proteínas SNARE/metabolismo , Animais , Apoptose , Diferenciação Celular , Epitélio , Feminino , Homeostase , Lactação , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Leite/metabolismo , Morfogênese , Ocludina/genética , Gravidez , Junções Íntimas/metabolismo , Transcriptoma
4.
Wiley Interdiscip Rev Dev Biol ; 8(6): e357, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31322329

RESUMO

Tremendous progress has been made in the field of stem cell biology. This is in part due to the emergence of various vertebrate organs, including the mammary gland, as an amenable model system for adult stem cell studies and remarkable technical advances in single cell technology and modern genetic lineage tracing. In the current review, we summarize the recent progress in mammary gland stem cell biology at both the adult and embryonic stages. We discuss current challenges and controversies, and potentially new and exciting directions for future research. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Tissue Stem Cells and Niches Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration.


Assuntos
Diferenciação Celular , Linhagem da Célula , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Regeneração , Transplante de Células-Tronco , Células-Tronco/citologia , Animais , Feminino , Humanos , Glândulas Mamárias Animais/fisiologia , Glândulas Mamárias Humanas/fisiologia , Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...